Schatzlab Research Projects Michael Schatz

Sept 9, 2011 Research Topics in Biology, WSBS

A Little About Me

Differential Analysis

Phylogeny & Evolution

Milestones in DNA Sequencing

970	1980	1990		2000		2(
Nature Vol. 265 February 24 1977		687		AT	GC	00
articles						
Nucleotide sequence of b $\Phi X174 DNA$	acteriophage				-	
F. Sanger, G. M. Air [*] , B. G. Barrell, N. L. Brow C. A. Hutchison III [‡] , P. M. Slocombe [§] & M. Sm MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2	vn ⁺ , A. R. Coulson, J. C. Fiddes, nith [•] 2QH, UK			-		Л
A DNA sequence for the genome of bacteriophage $\Phi X174$ of approximately 5,373 nucleotides has been determined using the rapid and simple 'plus and minus' method. The sequence identifies many of the features responsible for the production of the proteins of the nine known genes of the organism, including initiation and termination sites for the proteins and RNAs. Two pairs of genes are coided by the same region of DNA using different reading frames. The genome of bacteriophage $\Phi X174$ is a single-stranded, circular DNA of approximately 5,400 nucleotides coding for nine known proteins. The order of these genes, as determined by genetic techniques ¹⁻¹ , is $A-B-C-D-E-J-F-G-H$. Genes F, G and H code for structural proteins of the virus capsid, and gene J (as defined by sequence work) codes for a small basic protein	strand DNA of ΦX has the same sequence as the mRN certain conditions, will bind ribosomes so that a fragment can be isolated and sequenced. Only one to was found by comparison with the amino acid sequer was found that this ribosome binding site sequence co- initiation of the gene G proteins ¹ (positions 2,362-2,4 At this stage sequencing techniques using primed with DNA polymerase were being developed ¹⁴ and synthesised a decanucleotide with a sequence complen- part of the ribosome binding site. This was used to the intercistronic region between the F and G genes, up polymerase and ¹⁴ P-labelide triphosphates ¹⁵ . The ribb tion technique ¹⁶ facilitated the sequence determinant labelled DNA produced. This decanucleotide-prim was also used to develop the plus and minus method synthetic primers are, however, difficult to prepar	nd, in tected far it for the tubesis shortt ¹¹ ary to is into DNA style stitu- of the system iitable nd as			~	A G
19	77				-	C
Sanger e <i>t al</i> . I st Complete Organism			Radioactive Chain Terminatio 5000bp / week / person			
Bacteriopha	age ϕ XI74			· · · · ·	F	
5375 bp			http://er	n.wikipedia.org/ answers.com/t	wiki/File:Seq	uencing

Milestones in DNA Sequencing

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. "The machine was so revolutionary that it could decode in a single day the same amount of genetic material that most DNA labs could produce in a year." J. Craig Venter

Milestones in DNA Sequencing

2004 454/Roche *Pyrosequencing* Current Specs (Titanium): IM 400bp reads / run = IGbp / day 2007 Illumina Sequencing by Synthesis Current Specs (HiSeq 2000): 2.5B 100bp reads / run = 60Gbp / day 2008 ABI / Life Technologies SOLiD Sequencing Current Specs (5500xl): 5B 75bp reads / run = 30Gbp / day

Illumina Sequencing by Synthesis

http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

The DNA Data Race

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	\$300,000,000
2007	Levy et al.	Sanger (ABI)	\$10,000,000
2008	Wheeler et al.	Roche (454)	\$2,000,000
2008	Ley et al.	Illumina	\$1,000,000
2008	Bentley et al.	Illumina	\$250,000
2009	Pushkarev et al.	Helicos	\$48,000
2009	Drmanac et al.	Complete Genomics	\$4,400

(Pushkarev et al., 2009)

Sequencing a single human genome uses ~100 GB of compressed sequence data in billions of short reads. ~20 DVDs / genome

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers

http://pathogenomics.bham.ac.uk/hts/

The DNA Data Tsunami

Current world-wide sequencing capacity exceeds 13Pbp/year and is growing at 5x per year!

Our best (only) hope is to use many computers:

- Parallel Computing aka Cloud Computing
- Now your programs will crash on 1000 computers instead of just 1 ⁽²⁾

Warmup I: Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Genome Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Warmup 2: Birthday Matching

• Who here was born closest to Sept 9?

- You can only compare to I other person at a time

Find winner among 64 teams in just 6 rounds

Contrail http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome

- Genome: African male NA18507 (SRA000271, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

De novo mutations and de Bruijn Graphs

 Look for sequence paths unique to affected child

COLEC12 C->A

MicroSeq: NextGen Microsatellite Profiling

Mitchell Bekritsky, WSBS

- Class of simple sequence repeats
 - $\dots GCACACACACAT \dots = \dots G(CA)_5T \dots$
 - Created and mutate primarily through slippage during replication
 - Highly variable & ubiquitous
- Genotyping with SeqMS
 - Rapidly detect MS sequences
 - Map reads using a new MS-mapper
 - Analyze profiles in cells, across cells, & across populations
 - Loss of heterozygosity
 - Development of somatic & cancer cells
 - Relations across strains, across species
 - etc...

Structural Variations in Cancer

Use short reads to discover large scale variations

 Discordant Pairs Analysis with Hydra (Quinlan et al. 2010)

Circos plot of high confidence SVs¹⁵ specific to esophageal cancer sample

- Red: SV links
- Orange: 375 cancer genes
- Blue: 4950 disease genes

Detailed analysis of disrupted genes and fusion genes in progress

Illumina/PacBio Hybrid Assembly

- I. Trim/correct SR sequence
- 2. Compute an SR layout for each LR
 - I. Map SRs to LRs
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR
- 3. Co-assemble corrected LRs and SRs
 - Celera Assembler enhanced to support 16 Kbp reads

A hybrid strategy for utilizing single-molecule sequencing data for genome assembly and RNA-Seq. Koren, S, Walenz, BP, Martin, J, Jarvis, ED, Rasko, DA, Schatz, MC, McCombie, WR, Phillippy, AM. (2011) *In preparation*.

Summary

- We are entering the digital age of biology
 - Next generation sequencing, microarrays, mass spectrometry, microscopy, ecology, etc
- Modern biology requires (is) quantitative biology
 - Computational, mathematical, and statistical techniques applied to analyze, integrate, and interpret biological sensor data
- Don't let the data tsunami crash on you
 - Study, practice, collaborate with quantitative techniques

Acknowledgements

Schatzlab Matt Titmus Hayan Lee Mitch Bekritsky Paul Baranay Rohith Menon Goutham Bhat James Gurtowski

<u>CSHL</u>

Lippman Lab McCombie Lab Ware Lab Wigler Lab <u>NBACC</u> Adam Phillippy Sergey Koren

<u>UMD</u>

Steven Salzberg Mihai Pop Ben Langmead Cole Trapnell Thank You